Member Login English Home 中文版 日本語版 BBS Blog
Navigation
Home Page
Prices and Markets
Tungsten Products Price
Molybdenum Products Price
Vanadium Products Price
Titanium Products Price
Cobalt Products Price
Nickel Products Price
Rare-earth Price
Ferro Alloy Price
Tungsten's News
Tungsten's News,International
Tungsten's News,China
Powder Metallurgy Technology
News of Molybdenum
News of Refractory Metals
History of Tungsten
Sports & Tungsten
Military & Tungsten
Environment & Tungsten
Radiation Medical & Tungsten
Marketing of Tungsten
Tungsten Ore
Tungsten Oxides & Trioxides
Tungsten、Carbide Powder
Pure Tungsten
Tungsten Welding Electrodes
Tungsten Heavy Alloy
Tungsten Copper
Tungsten Jewelry
Ferro Tungsten
Tungsten Carbides
Tungsten Alloy Darts
Scrap Tungsten
Tungsten Alloy Bucking Bars
Non-ferrous metals
Molybdenum Related
Nickel Related
Cobalt Related
Vanadium Related
Titanium Related
Rare Earth
Technology of tungsten
Acknowledge of tungsten
Academic of tungsten
Research & Development
Patented Technology
Information Services
Information Offer
Advertising
Translation Services
Agent & Representative
Magazines & Books of tungsten
News of Chatroulette IT & Network
Department of Energy announces $41 million investment for carbon capture development
Author:shan    Source:network    Update Time:2011-8-30 9:11:56

Department of Energy announces $41 million investment for carbon capture development


Washington, D.C. — The U.S. Department of Energy announced today the selection of 16 projects aimed at developing advanced post-combustion technologies for capturing carbon dioxide (CO2) from coal–fired power plants.  The projects, valued at $41 million over three years, are focused on reducing the energy and cost penalties associated with applying currently available carbon capture technologies to existing and new power plants.

The selections announced today will focus on developing carbon capture technologies that can achieve at least 90 percent CO2 removal and reduce the added costs at power plants with carbon capture systems to no more than a 35 percent increase in the cost of electricity produced at the plant. The Obama Administration has made a goal of developing cost-effective deployment of carbon capture, utilization and storage technologies within 10 years, with an objective of bringing 5 to 10 commercial demonstration projects online by 2016.

“Charting a path toward clean coal is essential to achieving our goals of providing clean energy, creating American jobs, and reducing greenhouse gas emissions. It will also help position the United States as a leader in the global clean energy race,” said U.S. Energy Secretary Steven Chu.

Existing CO2 capture technologies are not efficient when considered in the context of large power plants. Current CO2  capture systems require large amounts of energy for their operation, resulting in decreased efficiency and reduced net power output when compared to plants operating without these technologies.  The net electricity produced could be significantly reduced – often referred to as parasitic loss – since 20 to 30 percent of the power generated by the plant would have to be used to capture and compress the CO2.

The goal of this research is to reduce the energy penalty with carbon capture and sequestration technologies, thereby reducing costs and helping to move the technology closer to widespread use. Post combustion CO2 capture can be applied to both new and existing plants by adding a “filter” that helps isolate the CO2 from the other gases before it leaves the plant. This “filter” can take the form of membranes, solvents and sorbents.

The projects, managed by the Department’s National Energy Technology Laboratory, selected for negotiation of award include:

Area of Interest – Solvents

Novozyme (Franklinton, N.C.) — The applicant proposes to design, build, and test an integrated bench-scale system that combines the attributes of the bio- catalyst, carbonic anhydrase, and ultrasound technology for reducing the energy required to remove the captured CO2 from the solvent. The application of ultrasonic energy forces dissolved CO2 into gas bubbles. The technologies are projected to reduce the CO2 capture energy penalty from a coal-fired power plant by as much as 51 percent compared to using conventional monoethnolamine (MEA) scrubbing technology. (DOE share: $1,620,794; recipient share: $422,269)

Babcock & Wilcox Power Generation Group (Barberton, Ohio) —The project will identify chemical additives that will improve overall performance of B&W’s amine-based CO2capture technology.  Recent testing at B&W indicates that blends of the solvent with additives capture CO2more effectively when combined versus the pure solvent.  Technology objectives include improving the CO2 capture system operability and reliability, minimizing environmental impacts, reducing corrosion potential in the system, and maximizing solvent durability. (DOE share: $2,835,680; recipient share: $708,920)

Battelle (PNNL) (Richland, Wash.) —The bench-scale project investigates new organic-based solvents designed specifically for capturing post-combustion CO2 emissions from coal-fired power plants. The low solvent regeneration temperatures of the proposed technology facilitates energy integration that has the potential to reduce overall CO2 capture energy penalty by more than 50 percent compared to commercial systems.  Continuous absorption-desorption tests will be performed on the optimal solvents over a one-year period. (DOE share: $1,999,693; recipient share: $500,000)

Carbon Capture Scientific (Pittsburgh, Pa.) —This project will perform bench-scale development and testing of a novel solvent-based CO2 scrubbing technology, known as Gas Pressurized Stripping (GPS).  The GPS technology has the potential to significantly reduce the energy penalty associated with solvent regeneration by operating at higher pressures which in turn reduces the compression requirements for placement of CO2 in pipelines.  Successful results could reduce the total parasitic power load of a CO2 capture process by 60 percent compared to the DOE baseline case. (DOE share:  $2,999,756; recipient share: $751,169)

GE Global Research (Niskayuna, N.Y.) —This project will continue research and bench-scale testing of a novel CO2 capture solvent, aminosilicone, developed as part of a previous DOE-funded program. A manufacturing plan for the solvent and price model will be used for optimization, and combined with a rigorous process model and thorough manufacturability analysis for the solvent, will enable a practical technology path to later development at larger scales and commercialization. (DOE share: $2,999,815; recipient share: $749,954) 

Area of Interest – Sorbents

W.R. Grace (Columbia, Md.) —The  proposed project will develop a cost-effective CO2 capture process known as pressure swing adsorption (PSA), which utilizes rapid pressure changes to capture and release CO2. Key to this project is finding a suitable match between the adsorbent and the pressure change cycle configuration. The applicants will develop a low-pressure-drop, structured adsorbent material, based on commercially-available materials that are suitable for use in a rapid PSA cycle configuration. The proposed work builds upon promising results for CO2 capture from flue gas obtained in a previous project employing a traditional PSA cycle configuration with long cycle times of 300 seconds or so. (DOE share:  $2,998,705; $749,921)

Georgia Tech Research Corp. (Atlanta, Ga.)—By using a rapid temperature change, a novel process - referred to as rapid temperature swing adsorption (RTSA) -  is being investigated for CO2capture. The CO2 is captured on hollow fibers loaded with silica-supported adsorbents. The outcomes of the project will be bench-scale demonstration of the concept of RTSA for CO2 capture, coupled with preliminary design, optimization and economic analysis of a full-scale system to demonstrate the potential for this technology to meet cost and performance goals set by DOE. (DOE share: $2,386,633; recipient share: $637,047)

InnoSepra (Bridgewater, N.J.) – This process utilizes sorbents with much lower CO2 capture energy requirements compared to competitive processes and has been successfully demonstrated at the lab scale to obtain greater than 99 percent CO2 purity, and more than 90 percent CO2recovery. The ultimate goals of the project are to confirm the projected performance of the InnoSepra process at the bench scale; provide sufficient data for design of a commercial-scale plant; and provide a high degree of confidence in the applicability, cost effectiveness and practical feasibility of this process. Projections based on detailed engineering evaluations show that the technology can reduce the power consumption for CO2 capture by more than 40 percent, and the capital cost for the CO2 capture equipment by more than 60 percent at commercial scale, resulting in a more than 40 percent reduction in the CO2 capture cost compared to alternate technologies such as amines.

[1] [2] Next


If you need any more details of the above news and/or products, please visit Chinatungsten Online, or contact us directly.
Disclaimer: The article is only reflecting the opinions of the author. We have no responsibility to prove the originality and authenticity of the content, words and/or pictures. You readers should just take it as reference and check the details by yourselves. And the content is not a suggestion for investment decision. The investor takes his or her own risks if he or she operates accordingly. If you have any dissent about the contents above, please contact the relevant author, or the webmaster. We will try our best to assist the dealing of the related issues. Thanks for your visit and cooperation.

ArticleInputer:shan    Editor:shan 
  • Back itemArticle:

  • Next itemArticle: No
  • 【Font:Small Large】【Comment】【Add favorite】【Mail this page】【Print】【Close
    Links
    China Tungsten Online Molybdenum Tungsten Wire Tungsten Bars/Rods Tungsten Bucking Bar
    Tungsten Carbides Tungsten Heater Pure Tungsten Tungsten Carbide & Alloy Tungsten Paper weight
    Tungsten Heavy Alloy Tungsten Powder China Dart Wiki of WMo Infosys
    Darts Shop Online Chatroulette Tungsten Copper Alloy Metal Pricing Tungsten Carbide Jewelry
    Tungsten Alloy Fishing Sinker Darts Forum Xiamen Tungsten Xatcm Stainless Steel Rails
    Global InfoMine Sheet Metal Machinery Interactive Investor Tungsten Price Wrmetal
    Link Exchange

    Add to FavoriteAbout CTIAContact UsMore LinksRecruitmentBusiness

    Address: 3F, No.25 WH Rd, the 2nd Xiamen Software Park, FJ 361008,China
    Phone:+86 592-5129696,+86 592-5129595;Fax:+86 592-5129797
    Sponsors: China Tungsten Industry Association,Chinatungsten Online
     Certified by MIIT:闽B2-20090025 闽ICP备05002525号
    Copyright © 2000 - 2009 Chinatungsten Online All Rights Reserved